Histone deacetylase 2 (HDAC2) protein-dependent deacetylation of mortality factor 4-like 1 (MORF4L1) protein enhances its homodimerization.

نویسندگان

  • Yan Chen
  • Jin Li
  • Sarah Dunn
  • Sheng Xiong
  • Wei Chen
  • Yutong Zhao
  • Bill B Chen
  • Rama K Mallampalli
  • Chunbin Zou
چکیده

Histone acetyltransferase mortality factor 4-like 1 (MORF4L1) is a relatively new histone acetyltransferase component that exists as a homodimer to exert its epigenetic function. The mechanism of MORF4L1 self-assembly is unknown. Here we report that Lys-148 deacetylation is indispensable for facilitating MORF4L1 self-assembly into a homodimeric unit. Among a stretch of ∼10 amino acids in the NH2 terminus between the chromodomain and MORF4-related gene (MRG) domain within MORF4L1, Lys-148 is normally acetylated. Substitution of Lys-148 with arginine augments MORF4L1 self-assembly. However, acetylation mimics of MORF4L1, including K148L and K148Q, abolished its self-assembly of the histone acetyltransferase component. HDAC2, a deacetylase, interacts with and keeps MORF4L1 in a deacetylation status at Lys(148) that triggers MORF4L1 self-assembly. Knockdown of HDAC2 reduces MORF4L1 self-assembly. HDAC2-dependent deacetylation of MORF4L1 enhances MORF4L1 homodimerization, thus facilitating the functionality of complex formation to repress cell proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone deacetylase 2–mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression

Glucocorticoids are the most effective antiinflammatory agents for the treatment of chronic inflammatory diseases even though some diseases, such as chronic obstructive pulmonary disease (COPD), are relatively glucocorticoid insensitive. However, the molecular mechanism of this glucocorticoid insensitivity remains uncertain. We show that a defect of glucocorticoid receptor (GR) deacetylation ca...

متن کامل

ATRA activates and PDGF-BB represses the SM22α promoter through KLF4 binding to, or dissociating from, its cis-DNA elements.

AIMS Krüppel-like factor 4 (KLF4) is implicated in all-trans retinoic acid (ATRA)-induced and platelet-derived growth factor-BB (PDGF-BB)-repressed SM22α expression in vascular smooth muscle cells (VSMCs). However, its exact mechanism of action remains unclear. We determined how KLF4 plays different roles in ATRA- and PDGF-BB-dependent regulation of the SM22α gene. METHODS AND RESULTS ATRA an...

متن کامل

Histone deacetylase-2 is involved in stress-induced cognitive impairment via histone deacetylation and PI3K/AKT signaling pathway modification

Exposure to chronic stress upregulates blood glucocorticoid levels and impairs cognition via diverse epigenetic mechanisms, such as histone deacetylation. Histone deacetylation can lead to transcriptional silencing of many proteins involved in cognition and may also cause learning and memory dysfunction. Histone deacetylase‑2 (HDAC2) has been demonstrated to epigenetically block cognition via a...

متن کامل

The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein.

The product of the retinoblastoma susceptibility gene, the Rb protein, functions partly through transcriptional repression of E2F-regulated genes. Repression by Rb is mediated, at least in part, by a histone deacetylase complex, whose enzymatic activity relies on HDAC1, HDAC2 or HDAC3. Recently, we have shown that the Rb-associated histone deacetylase complex contains RbAp48 protein, which inte...

متن کامل

Regulation of transcription factor YY1 by acetylation and deacetylation.

YY1 is a sequence-specific DNA-binding transcription factor that has many important biological roles. It activates or represses many genes during cell growth and differentiation and is also required for the normal development of mammalian embryos. Previous studies have established that YY1 interacts with histone acetyltransferases p300 and CREB-binding protein (CBP) and histone deacetylase 1 (H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 10  شماره 

صفحات  -

تاریخ انتشار 2014